Unsupervised Riemannian Clustering of Probability Density Functions
نویسندگان
چکیده
We present an algorithm for grouping families of probability density functions (pdfs). We exploit the fact that under the square-root re-parametrization, the space of pdfs forms a Riemannian manifold, namely the unit Hilbert sphere. An immediate consequence of this re-parametrization is that different families of pdfs form different submanifolds of the unit Hilbert sphere. Therefore, the problem of clustering pdfs reduces to the problem of clustering multiple submanifolds on the unit Hilbert sphere. We solve this problem by first learning a low-dimensional representation of the pdfs using generalizations of local nonlinear dimensionality reduction algorithms from Euclidean to Riemannian spaces. Then, by assuming that the pdfs from different groups are separated, we show that the null space of a matrix built from the local representation gives the segmentation of the pdfs. We also apply of our approach to the texture segmentation problem in computer vision.
منابع مشابه
Unsupervised speaker diarization using riemannian manifold clustering
We address the problem of speaker clustering for robust unsupervised speaker diarization. We model each speakerhomogeneous segment as one single full multivariate Gaussian probability density function (pdf) and take into consideration the Riemannian property of Gaussian pdfs. By assuming that segments from different speakers lie on different (possibly intersected) sub-manifolds of the manifold ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملMinimum Density Hyperplanes
Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is a central assumption in statistical and machine learning approaches for the classification of unlabelled data. In unsupervised classification this cluster definition underlies a nonparametric approach known as density clustering. In semi-supervised classification, cl...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کامل